Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(212): 20230597, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471532

RESUMO

The sponge-like biomineralized calcite materials found in echinoderm skeletons are of interest in terms of both structure formation and biological function. Despite their crystalline atomic structure, they exhibit curved interfaces that have been related to known triply periodic minimal surfaces. Here, we investigate the endoskeleton of the sea urchin Cidaris rugosa that has long been known to form a microstructure related to the Primitive surface. Using X-ray tomography, we find that the endoskeleton is organized as a composite material consisting of domains of bicontinuous microstructures with different structural properties. We describe, for the first time, the co-occurrence of ordered single Primitive and single Diamond structures and of a disordered structure within a single skeletal plate. We show that these structures can be distinguished by structural properties including solid volume fraction, trabeculae width and, to a lesser extent, interface area and mean curvature. In doing so, we present a robust method that extracts interface areas and curvature integrals from voxelized datasets using the Steiner polynomial for parallel body volumes. We discuss these very large-scale bicontinuous structures in the context of their function, formation and evolution.


Assuntos
Carbonato de Cálcio , Ouriços-do-Mar , Animais , Carbonato de Cálcio/química
2.
J Phys Chem B ; 127(14): 3223-3230, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36999811

RESUMO

Low-frequency Raman (LFR) spectroscopy is presented as a viable tool for studying the hydration characteristics of lyotropic liquid crystal systems herein. Monoolein was used as a model compound, and its structural changes were probed both in situ and ex situ which enabled a comparison between different hydration states. A custom-built instrumental configuration allowed the advantages of LFR spectroscopy to be utilized for dynamic hydration analysis. On the other hand, static measurements of equilibrated systems (i.e., with varied aqueous content) showcased the structural sensitivity of LFR spectroscopy. The subtle differences not intuitively observed between similar self-assembled architectures were distinguished by chemometric analysis that directly correlated with the results from small-angle X-ray scattering (SAXS), which is the current "gold standard" method for determining the structure of such materials.

3.
Soft Matter ; 19(8): 1586-1595, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749349

RESUMO

Nature employs an impressive range of topologically complex ordered nanostructures that occur in various forms in both natural and synthetic materials. A particular class of these exhibits negative curvature and forms periodic saddle-shaped surfaces in three dimensions. Unlike pattern formation on flat or positively curved surfaces like spherical systems, the understanding of patterning on such surfaces is highly complicated due to the structures being intrinsically intertwined in three dimensions. We present a new method for visualisation and analysis of patterns on triply periodic negatively curved surfaces by mapping to two-dimensional hyperbolic space analogous to spherical projections in cartography thus effectively creating a more accessible "hyperbolic map" of the pattern. Specifically, we exemplify the method via the simplest triply periodic minimal surfaces: the Primitive, Diamond, and Gyroid in their universal cover along with decorations from a soft materials, whose structures involve decorations of soft matter on negatively curved surfaces, not necessarily minimal.

4.
J Am Chem Soc ; 145(3): 1769-1782, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631996

RESUMO

Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.

5.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461812

RESUMO

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Assuntos
Fenômenos Mecânicos , Membrana Celular , Morfogênese
6.
JACS Au ; 2(7): 1757-1768, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911453

RESUMO

Herein, we report a straightforward approach for the in situ preparation of Pt-Au alloy nanoparticles from Pt + xAu/C nanocomposites using monometallic colloidal nanoparticles as starting blocks. Four different compositions with fixed Pt content and varying Pt to Au mass ratios from 1:1 up to 1:7 were prepared as formic acid oxidation reaction (FAOR) catalysts. The study was carried out in a gas diffusion electrode (GDE) setup. It is shown that the presence of Au in the nanocomposites substantially improves the FAOR activity with respect to pure Pt/C, which serves as a reference. The nanocomposite with a mass ratio of 1:5 between Pt and Au displays the best performance during potentiodynamic tests, with the electro-oxidation rates, overpotential, and poisoning resistance being improved simultaneously. By comparison, too low or too high Au contributions in the nanocomposites lead to an unbalanced performance in the FAOR. The combination of operando small-angle X-ray scattering (SAXS), scanning transmission electron microscopy (STEM) elemental mapping, and wide-angle X-ray scattering (WAXS) reveals that for the nanocomposite with a 1:5 mass ratio, a conversion between Pt and Au from separate nanoparticles to alloy nanoparticles occurs during continuous potential cycling in formic acid. By comparison, the nanocomposites with lower Au contents, for example, 1:2, exhibit less in situ alloying, and the concomitant performance improvement is less pronounced. On applying identical location transmission electron microscopy (IL-TEM), it is revealed that the in situ alloying is due to Pt dissolution and re-deposition onto Au as well as Pt migration and coalescence with Au nanoparticles.

7.
Food Res Int ; 157: 111292, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761598

RESUMO

Small-angle X-ray scattering (SAXS) was used to monitor structural changes induced by heat treatment and acid gelation in milk matrices with added whey protein concentrates (WPCs) and nano-particulated whey protein (NWP). In general, heat treatment was found to mainly affect whey protein components while pure casein micelles remained largely unaffected. Conversely, acidification mainly affected caseins while leaving pure whey protein components intact. In mixed systems, the overall behaviour could be understood as a combination of the above effects, however, the type of the added whey protein components influenced the resulting structure formation and dynamics. NWP led to formation of larger structures compared to WPC components during heat treatment, although the latter showed faster aggregation dynamics. During acidification the NWP containing samples exhibited structural changes at slightly higher pH values than the WPC samples. The modeling of pure liquid whey protein (LWPC) samples showed that the heat induced denaturation and resulting aggregation of individual whey proteins is mainly a surface effect leaving the overall protein shape and dimensions unaffected. Schematic diagrams based on the current SAXS data and previous studies were constructed to illustrate the suggested interaction mechanisms between casein and whey proteins during both heating and acidification.


Assuntos
Caseínas , Leite , Animais , Caseínas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Leite/química , Proteínas do Leite/química , Desnaturação Proteica , Espalhamento a Baixo Ângulo , Proteínas do Soro do Leite/análise , Difração de Raios X
8.
Phys Rev Lett ; 127(17): 177801, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739279

RESUMO

We present structural relaxation studies of a polystyrene star polymer after cessation of high-rate extensional flow. During the steady-state flow, the scattering pattern shows two sets of independent correlations peaks, reflecting the structure of a polymer confined in a fully oriented three-armed tube. Upon cessation of flow, the relaxation constitutes three distinct regimes. In a first regime, the perpendicular correlation peaks disappear, signifying disruption of the virtual tube. In a second regime, broad scattering arcs emerge, reflecting relaxation from highly aligned chains to more relaxed, still anisotropic form. New entanglements dominate the last relaxation regime where the scattering pattern evolves to a successively elliptical and circular pattern, reflecting relaxation via reptation.

9.
Food Res Int ; 147: 110527, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399505

RESUMO

Understanding the changes in milk at a nanostructural level during high-pressure (HP) treatment can provide new insights to improve the safety and functionality of dairy products. In this study, modifications of milk nanostructure during HP were studied in situ by small-angle X-ray scattering (SAXS). Skimmed milk was pressurized to 200 or 400 MPa at 25, 40 or 60 °C and held for 5 or 10 min, and the effect of single- and double-HP treatment was also investigated. In most cases, the SAXS patterns of skimmed milk are well fitted with a three-population model: a low-q micellar feature reflecting the overall micelle size (~0.002 Å-1), a small casein cluster contribution at intermediate-q (around 0.01 Å-1) and a high-q (0.08-0.1 Å-1) population of milk protein inhomogeneities. However, at 60 °C a scattering feature of colloidal calcium phosphate (CCP) which is normally only seen with neutron scattering, was observed at 0.035 Å-1. By varying the pressure, temperature, holding and depressurization times, as well as performing cycled pressure treatment, we followed the dynamic structural changes in the skimmed milk protein structure at different length scales, which depending on the processing conditions, were irreversible or reversible within the timescales investigated. Pressure and temperature of the HP process have major effects, not only on size of casein micelles, but also on "protein inhomogeneities" within their internal structure. Under HP, increasing processing time at 200 MPa induced re-association of the micelles, however, the changes in the internal structure were more pressure-dependent than time dependent.


Assuntos
Caseínas , Leite , Animais , Pressão Hidrostática , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Front Chem ; 9: 631370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954157

RESUMO

Ultrastructural membrane arrangements in living cells and their dynamic remodeling in response to environmental changes remain an area of active research but are also subject to large uncertainty. The use of noninvasive methods such as X-ray and neutron scattering provides an attractive complimentary source of information to direct imaging because in vivo systems can be probed in near-natural conditions. However, without solid underlying structural modeling to properly interpret the indirect information extracted, scattering provides at best qualitative information and at worst direct misinterpretations. Here we review the current state of small-angle scattering applied to photosynthetic membrane systems with particular focus on data interpretation and modeling.

11.
Food Res Int ; 140: 109867, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648185

RESUMO

Calcium citrate tetrahydrate (CCT) and hexahydrate (CCH) precipitates from aqueous solutions of CaCl2 and sodium citrate above and below the transition temperature of 52 °C, respectively. The CCT, the dihydrate (CCD) and anhydrate (CCA) as obtained by a stepwise dehydration of solid CCH have enthalpy of dehydration of ΔH0CCH to CCT = 43.6, ΔH0CCT to CCD = 43.8, and ΔH0CCD to CCA = 88.1 kJ∙mol-1 as measured by DSC. WAXS measurements demonstrate a stepwise decrease in unit cell size upon dehydration, and a stronger binding of the two first water compared to additional. The increasing negative enthalpy of dissolution, as calculated from the temperature dependence of solubility (10-90 °C), +21 kJ∙mol-1 (CCH), -20 kJ∙mol-1 (CCT), -22 kJ∙mol-1 (CCD), and -40 kJ∙mol-1 (CCA) shows along the series of hydrates with increasing solubility, enthalpy-entropy compensation with an isoequilibrium temperature of 49 °C. Conversion of CCD and CCA in aqueous solutions yields the more soluble CCT, not the stable CCH in agreement with Ostwald's stage law, increasing calcium bioaccessibility under physiological conditions in intestines.


Assuntos
Citrato de Cálcio , Cálcio , Solubilidade , Termodinâmica , Água
12.
J Phys Chem Lett ; 12(12): 3224-3231, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764071

RESUMO

Understanding the formation of nanomaterials down to the atomic level is key to rational design of advanced materials. Despite their widespread use and intensive study over the years, the detailed formation mechanism of platinum (Pt) nanoparticles remains challenging to explore and rationalize. Here, various in situ characterization techniques, and in particular X-ray total scattering with pair distribution function (PDF) analysis, are used to follow the structural and chemical changes taking place during a surfactant-free synthesis of Pt nanoparticles in alkaline methanol. Polynuclear structures form at the beginning of the synthesis, and Pt-Pt pair distances are identified before any nanoparticles are generated. The structural motifs best describing the species formed change with time, e.g., from [PtCl5-PtCl5] and [PtCl6-Pt2Cl6-PtCl6] to [Pt2Cl10-Pt3Cl8-Pt2Cl10]. The formation of these polynuclear structures with Pt-Pt coordination before the formation of the nanoparticles is suggested to account for the fast nucleation observed in the synthesis.

13.
Nat Mater ; 20(2): 208-213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32839587

RESUMO

Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum-cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum-cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.

14.
Proc Math Phys Eng Sci ; 476(2241): 20200170, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33071571

RESUMO

Using methods from the field of topological data analysis, we investigate the self-assembly and emergence of three-dimensional quasi-crystalline structures in a single-component colloidal system. Combining molecular dynamics and persistent homology, we analyse the time evolution of persistence diagrams and particular local structural motifs. Our analysis reveals the formation and dissipation of specific particle constellations in these trajectories, and shows that the persistence diagrams are sensitive to nucleation and convergence to a final structure. Identification of local motifs allows quantification of the similarities between the final structures in a topological sense. This analysis reveals a continuous variation with density between crystalline clathrate, quasi-crystalline, and disordered phases quantified by 'topological proximity', a visualization of the Wasserstein distances between persistence diagrams. From a topological perspective, there is a subtle, but direct connection between quasi-crystalline, crystalline and disordered states. Our results demonstrate that topological data analysis provides detailed insights into molecular self-assembly.

15.
Chemistry ; 26(41): 9012-9023, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32428349

RESUMO

Understanding the formation of nanoparticles (NPs) is key to develop materials by sustainable routes. The Co4CatTM process is a new synthesis of precious metal NPs in alkaline mono-alcohols well-suited to develop active nanocatalysts. The synthesis is 'facile', surfactant-free and performed under mild conditions like low temperature. The reducing properties of the solvent are here shown to strongly influence the formation of Pt NPs. Based on the in situ formation of CO adsorbed on the NP surface by solvent oxidation, a model is proposed that accounts for the different growth and stabilization mechanisms as well as re-dispersion properties of the surfactant-free NPs in different solvents. Using in situ and ex situ characterizations, it is established that in methanol, a slow nucleation with a limited NP growth is achieved. In ethanol, a fast nucleation followed by continuous and pronounced particle sintering occurs.

16.
Sci Rep ; 9(1): 19405, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852917

RESUMO

The last decade has seen a range of studies using non-invasive neutron and X-ray techniques to probe the ultrastructure of a variety of photosynthetic membrane systems. A common denominator in this work is the lack of an explicitly formulated underlying structural model, ultimately leading to ambiguity in the data interpretation. Here we formulate and implement a full mathematical model of the scattering from a stacked double bilayer membrane system taking instrumental resolution and polydispersity into account. We validate our model by direct simulation of scattering patterns from 3D structural models. Most importantly, we demonstrate that the full scattering curves from three structurally typical cyanobacterial thylakoid membrane systems measured in vivo can all be described within this framework. The model provides realistic estimates of key structural parameters in the thylakoid membrane, in particular the overall stacking distance and how this is divided between membranes, lumen and cytoplasmic liquid. Finally, from fitted scattering length densities it becomes clear that the protein content in the inner lumen has to be lower than in the outer cytoplasmic liquid and we extract the first quantitative measure of the luminal protein content in a living cyanobacteria.


Assuntos
Cianobactérias/ultraestrutura , Fotossíntese/genética , Tilacoides/ultraestrutura , Cianobactérias/química , Cianobactérias/genética , Conformação Molecular , Difração de Nêutrons , Nêutrons , Espalhamento a Baixo Ângulo , Tilacoides/química , Tilacoides/genética
17.
Soft Matter ; 15(46): 9394-9404, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31595280

RESUMO

Confinement or geometric frustration is known to alter the structure of soft matter, including copolymeric melts, and can consequently be used to tune structure and properties. Here we investigate the self-assembly of ABC and ABB 3-miktoarm star copolymers confined to a spherical shell using coarse-grained dissipative particle dynamics simulations. In bulk and flat geometries the ABC stars form hexagonal tilings, but this is topologically prohibited in a spherical geometry which normally is alleviated by forming pentagonal tiles. However, the molecular architecture of the ABC stars implies an additional 'color constraint' which only allows even tilings (where all polygons have an even number of edges) and we study the effect of these simultaneous constraints. We find that both ABC and ABB systems form spherical tiling patterns, the type of which depends on the radius of the spherical substrate. For small spherical substrates, all solutions correspond to patterns solving the Thomson problem of placing mobile repulsive electric charges on a sphere. In ABC systems we find three coexisting, possibly different tilings, one in each color, each of them solving the Thomson problem simultaneously. For all except the smallest substrates, we find competing solutions with seemingly degenerate free energies that occur with different probabilities. Statistically, an observer who is blind to the differences between B and C can tell from the structure of the A domains if the system is an ABC or an ABB star copolymer system.

18.
Phys Rev Lett ; 120(20): 207801, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864321

RESUMO

We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.

19.
Mol Pharm ; 15(7): 2584-2593, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29745668

RESUMO

Group B Streptococcus (GBS) is a leading cause of serious bacterial neonatal infections worldwide, which provides an unmet medical need for a globally effective vaccine. The recombinant GBS fusion antigen GBS-NN contains the N-terminal regions of the GBS Rib and Alpha C proteins. It shows promising immunogenicity eliciting protective immunity in mice and encouraging results in early human clinical trials. Understanding the physical stability of GBS-NN containing conformational B-cell epitopes is crucial to ensure optimal vaccine stability, efficacy, and safety. We initially discovered that GBS-NN is prone to form higher-order structures at elevated temperatures. We therefore investigated the self-assembly behavior of GBS-NN and characterized the higher-order conformational structures as a function of temperature. In the native state, GBS-NN exists as a monomer and has a secondary structure containing α-helix and ß-sheet. Langmuir studies demonstrated that the native protein is highly surface-active and forms a monolayer film at the air-water interface because of its amphipathic properties. The conformational stability of GBS-NN was measured as a function of temperature. GBS-NN has an unusual thermal behavior with a phase transition of approximately 61 °C, which is not accompanied by any major changes in the secondary structure. However, the antigen showed irreversible self-assembly as a function of temperature into higher-order structures with a hydrodynamic diameter of approximately 100 nm. Cryo-transmission electron microscopy analyses demonstrated that these self-assemblies consist of vesicular, ring-like structures with a hollow aqueous interior. Therefore, GBS-NN is a physically stable monomeric protein but is prone to temperature-induced self-assembly above 61 °C.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Superfície/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Membrana/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/isolamento & purificação , Antígenos de Superfície/química , Antígenos de Superfície/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/química , Temperatura , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
20.
Sci Rep ; 8(1): 959, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343724

RESUMO

Diatoms are in focus as biological materials for a range of photonic applications. Many of these applications would require embedding a multitude of diatoms in a matrix (e.g. paint, crème or lacquer); however, most studies on the photonic and spectral properties of diatoms frustules (silica walls) have been carried out on single cells. In this study, for the first time, we test the spectral properties of layers of frustules of three diatom species (Coscinodiscus granii, Thalassiosira punctifera and Thalassiosira pseudonana), with special focus on transmission and reflectance in the UV range. The transmittance efficiency in the UV A and B range was: T. pseudonana (56-59%) >C. granii (53-54%) >T. punctifera (18-21%) for the rinsed frustules. To investigate the underlying cause of these differences, we performed X-ray scattering analysis, measurement of layer thickness and microscopic determination of frustule nanostructures. We further tested dried intact cells in the same experimental setup. Based on these data we discuss the relative importance of crystal structure properties, nanostructure and quantity of material on the spectral properties of diatom layers. Characterization of the UV protection performance of layers of diatom frustules is of central relevance for their potential use as innovative bio-based UV filters.


Assuntos
Diatomáceas/química , Nanoestruturas/química , Nanotecnologia/métodos , Espalhamento de Radiação , Dióxido de Silício/química , Raios Ultravioleta , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...